Genomics for monitoring and understanding species responses to global climate change
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species’ potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species’ evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
The importance of genomic variation for biodiversity, ecosystems and people
Article 16 October 2020
The evolutionary genomics of species’ responses to climate change
Article 09 August 2021
Opportunities and challenges of macrogenetic studies
Article 18 August 2021
References
- Smith, T. B. & Bernatchez, L. Evolutionary change in human-altered environments. Mol. Ecol.17, 1–8 (2008). PubMedGoogle Scholar
- Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett.15, 365–377 (2012). PubMedPubMed CentralGoogle Scholar
- Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl.7, 1–14 (2014). PubMedPubMed CentralGoogle Scholar
- Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science354, aaf7671 (2016). PubMedGoogle Scholar
- Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett.4, 4–18 (2020). A road map of how science and society can work together to facilitate sampling, estimating of fitness parameters and genome sequencing for a broad range of species to implement mitigation measures to face GCC.PubMedPubMed CentralGoogle Scholar
- Lancaster, L. T. et al. Understanding climate change response in the age of genomics. J. Anim. Ecol.91, 1056–1063 (2022). Special issue highlighting how emerging genomic approaches are used to understand population responses to GCC across a diverse range of animal systems.PubMedGoogle Scholar
- Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. B367, 1665–1679 (2012). PubMedPubMed CentralGoogle Scholar
- Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol.28, 1753–1765 (2022). CASGoogle Scholar
- Sandoval-Castillo, J. et al. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proc. Natl Acad. Sci. USA117, 17112–17121 (2020). CASPubMedPubMed CentralADSGoogle Scholar
- Eisenhauer, N. et al. The dark side of animal phenology. Trends Ecol. Evol.33, 898–901 (2018). PubMedGoogle Scholar
- Miller-Rushing, A. J. & Primack, R. B. Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology89, 332–341 (2008). PubMedGoogle Scholar
- Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLOS Biol.5, e124 (2007). PubMedPubMed CentralGoogle Scholar
- Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol.25, 325–331 (2010). PubMedGoogle Scholar
- Parmesan, C. & Singer, M. C. Mosaics of climatic stress across species’ ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Phil. Trans. R. Soc. B377, 20210003 (2022). PubMedPubMed CentralGoogle Scholar
- Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature470, 479–485 (2011). CASPubMedADSGoogle Scholar
- Carroll, S. P. et al. Applying evolutionary biology to address global challenges. Science346, 1245993 (2014). PubMedPubMed CentralGoogle Scholar
- Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Phil. Trans. R. Soc. B374, 20180186 (2019). PubMedPubMed CentralGoogle Scholar
- Hansen, M. M., Olivieri, I., Waller, D. M., Nielsen, E. E. & Group, T. G. W. Monitoring adaptive genetic responses to environmental change. Mol. Ecol.21, 1311–1329 (2012). PubMedGoogle Scholar
- Verhoeven, K. J. F., vonHoldt, B. M. & Sork, V. L. Epigenetics in ecology and evolution: what we know and what we need to know. Mol. Ecol.25, 1631–1638 (2016). PubMedGoogle Scholar
- Everett, L. J. et al. Gene expression networks in the Drosophila genetic reference panel. Genome Res.30, 485–496 (2020). CASPubMedPubMed CentralGoogle Scholar
- Yu, Y. & Bergland, A. O. Distinct signals of clinal and seasonal allele frequency change at eQTLs in Drosophila melanogaster. Evol76, 2758–2768 (2022). CASGoogle Scholar
- Stange, M., Barrett, R. D. H. & Hendry, A. P. The importance of genomic variation for biodiversity, ecosystems and people. Nat. Rev. Genet.22, 89–105 (2021). CASPubMedGoogle Scholar
- McGaughran, A., Laver, R. & Fraser, C. Evolutionary responses to warming. Trends Ecol. Evol.36, 591–600 (2021). PubMedGoogle Scholar
- Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet.18, 563–575 (2017). CASPubMedGoogle Scholar
- Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet.21, 597–614 (2020). CASPubMedPubMed CentralGoogle Scholar
- De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet.22, 572–587 (2021). PubMedPubMed CentralGoogle Scholar
- Thomas, L. et al. Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. Sci. Adv.8, eabl9185 (2022). CASPubMedPubMed CentralGoogle Scholar
- Hoban, S. et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am. Nat.188, 379–397 (2016). PubMedPubMed CentralGoogle Scholar
- Boulanger, E. et al. Climate differently influences the genomic patterns of two sympatric marine fish species. J. Anim. Ecol.91, 1180–1195 (2022). PubMedGoogle Scholar
- Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol.24, 4348–4370 (2015). PubMedGoogle Scholar
- Lasky, J. R., Josephs, E. B. & Morris, G. P. Genotype–environment associations to reveal the molecular basis of environmental adaptation. Plant Cell35, 125–138 (2023). PubMedGoogle Scholar
- Alvarado, A. H. et al. Genotype–environment associations across spatial scales reveal the importance of putative adaptive genetic variation in divergence. Evol. Appl.15, 1390–1407 (2022). CASPubMedPubMed CentralGoogle Scholar
- Nielsen, E. S., Henriques, R., Beger, M., Toonen, R. J. & Von der Heyden, S. Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol. Biol.20, 1–17 (2020). Google Scholar
- Brauer, C. J., Unmack, P. J., Smith, S., Bernatchez, L. & Beheregaray, L. B. On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Mol. Ecol.27, 3484–3497 (2018). CASPubMedGoogle Scholar
- Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol.34, 641–654 (2019). PubMedGoogle Scholar
- Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol.24, 1031–1046 (2015). PubMedGoogle Scholar
- Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol.27, 2215–2233 (2018). CASPubMedGoogle Scholar
- Capblancq, T., Luu, K., Blum, M. G. & Bazin, E. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol. Ecol. Resour.18, 1223–1233 (2018). CASPubMedGoogle Scholar
- Martínez-Berdeja, A. et al. Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA117, 2526–2534 (2020). PubMedPubMed CentralADSGoogle Scholar
- Fournier‐Level, A. et al. Adaptive significance of flowering time variation across natural seasonal environments in Arabidopsis thaliana. N. Phytol.234, 719–734 (2022). Google Scholar
- Capblancq, T. & Forester, B. R. Redundancy analysis: a Swiss Army knife for landscape genomics. Methods Ecol. Evol.12, 2298–2309 (2021). A review of the application and challenges of RDA for understanding the relationship between genetic variation and the environment, with a case study and associated tutorial for users.Google Scholar
- Booker, T. R., Yeaman, S., Whiting, J. R. & Whitlock, M. C. The WZA: a window-based method for characterizing genotype-environment associations. Mol. Ecol. Resour.https://doi.org/10.1111/1755-0998.13768 (2023).
- Meek, M. H. et al. Understanding local adaptation to prepare populations for climate change. Bioscience73, 36–47 (2023). Google Scholar
- Beer, M. A., Kane, R. A., Micheletti, S. J., Kozakiewicz, C. P. & Storfer, A. Landscape genomics of the streamside salamander: implications for species management in the face of environmental change. Evol. Appl.15, 220–236 (2022). A demonstration of the use of GEAs to detect adaptive variation for understanding the potential for adaptation to environmental challenges across a heterogeneous landscape.PubMedPubMed CentralGoogle Scholar
- Aguirre‐Liguori, J. et al. Connecting genomic patterns of local adaptation and niche suitability in teosintes. Mol. Ecol.26, 4226–4240 (2017). PubMedGoogle Scholar
- Flanagan, S. P., Forester, B. R., Latch, E. K., Aitken, S. N. & Hoban, S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol. Appl.11, 1035–1052 (2018). PubMedGoogle Scholar
- Xuereb, A., d’Aloia, C. C., Andrello, M., Bernatchez, L. & Fortin, M. J. Incorporating putatively neutral and adaptive genomic data into marine conservation planning. Conserv. Biol.35, 909–920 (2020). PubMedGoogle Scholar
- Forester, B. R. et al. Genomics‐informed delineation of conservation units in a desert amphibian. Mol. Ecol.31, 5249–5269 (2022). PubMedPubMed CentralGoogle Scholar
- Mahony, C. R. et al. Evaluating genomic data for management of local adaptation in a changing climate: a lodgepole pine case study. Evol. Appl.13, 116–131 (2020). PubMedGoogle Scholar
- Chen, Z. et al. Applying genomics in assisted migration under climate change: framework, empirical applications, and case studies. Evol. Appl.15, 3–21 (2021). MathSciNetPubMedPubMed CentralGoogle Scholar
- Lotterhos, K. E. The paradox of adaptive trait clines with nonclinal patterns in the underlying genes. Proc. Natl Acad. Sci. USA120, e2220313120 (2023). CASPubMedPubMed CentralGoogle Scholar
- Rockman, M. V. THE QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution66, 1–17 (2012). PubMedGoogle Scholar
- Rougemont, Q. et al. Long-distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Mol. Ecol.32, 542–559 (2023). CASPubMedGoogle Scholar
- Rybnikov, S. R., Frenkel, Z., Hübner, S., Weissman, D. B. & Korol, A. B. Modeling the evolution of recombination plasticity: a prospective review. BioEssays45, e2200237 (2023). PubMedGoogle Scholar
- Schlötterer, C. How predictable is adaptation from standing genetic variation? Experimental evolution in Drosophila highlights the central role of redundancy and linkage disequilibrium. Phil. Trans. R. Soc. B378, 20220046 (2023). PubMedPubMed CentralGoogle Scholar
- Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R. & Weigel, D. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature573, 126–129 (2019). A large-scale common garden experiment showing differences in relative fitness under climate change associated with candidate genomic regions inArabidopsis thaliana.CASPubMedADSGoogle Scholar
- Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature441, 947–952 (2006). CASPubMedADSGoogle Scholar
- Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett.18, 1–16 (2015). Adapted the GF approach on SNP data set, originally developed to model spatial variation in community composition, to model turnover in allele frequency and called it ‘genetic offset’.PubMedGoogle Scholar
- Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science359, 83–86 (2018). Among the first studies to assess genomic offset on natural populations and link it with observed losses in fitness (population declines) in order to provide a rigorous validation of the predictions.CASPubMedADSGoogle Scholar
- Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst.51, 245–269 (2020). Review of the main steps and associated statistical methods in genomic prediction of maladaptation across current and future climatic landscapes.Google Scholar
- Rellstab, C., Dauphin, B. & Exposito-Alonso, M. Prospects and limitations of genomic offset in conservation management. Evol. Appl.14, 1202–1212 (2021). PubMedPubMed CentralGoogle Scholar
- Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: calculating importance gradients on physical predictors. Ecology93, 156–168 (2012). PubMedGoogle Scholar
- Ingvarsson, P. K. & Bernhardsson, C. Genome-wide signatures of environmental adaptation in European aspen (Populus tremula) under current and future climate conditions. Evol. Appl.13, 132–142 (2019). PubMedPubMed CentralGoogle Scholar
- Martins, K. et al. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evol. Appl.11, 1842–1858 (2018). CASPubMedPubMed CentralGoogle Scholar
- Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett.21, 1085–1096 (2018). PubMedGoogle Scholar
- Ferrier, S. & Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol.43, 393–404 (2006). Google Scholar
- Supple, M. A. et al. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change. eLife7, e31835 (2018). PubMedPubMed CentralGoogle Scholar
- Steane, D. A. et al. Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Mol. Ecol.23, 2500–2513 (2014). PubMedGoogle Scholar
- Carvalho, C. S. et al. Combining genotype, phenotype, and environmental data to delineate site-adjusted provenance strategies for ecological restoration. Mol. Ecol. Resour.21, 44–58 (2021). PubMedGoogle Scholar
- Rellstab, C. et al. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol.25, 5907–5924 (2016). PubMedGoogle Scholar
- Pina-Martins, F., Baptista, J., Pappas, G. Jr & Paulo, O. S. New insights into adaptation and population structure of cork oak using genotyping by sequencing. Glob. Change Biol.25, 337–350 (2019). ADSGoogle Scholar
- Rochat, E., Selmoni, O. & Joost, S. Spatial areas of genotype probability: predicting the spatial distribution of adaptive genetic variants under future climatic conditions. Divers. Distrib.27, 1076–1090 (2021). Google Scholar
- Gain, C. et al. A quantitative theory for genomic offset statistics. Mol. Biol. Evol.40, 6 (2023). Google Scholar
- Hoffmann, A. A., Weeks, A. R. & Sgrò, C. M. Opportunities and challenges in assessing climate change vulnerability through genomics. Cell184, 1420–1425 (2021). Describes the limitations and their respective solutions in genomic vulnerability assessments.CASPubMedGoogle Scholar
- Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol.5, 1350–1360 (2021). PubMedGoogle Scholar
- Aguirre‐Liguori, J. A. et al. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). Mol. Ecol.28, 2814–2830 (2019). PubMedGoogle Scholar
- Brauer, C. J. et al. Natural hybridization reduces vulnerability to climate change. Nat. Clim. Change13, 282–289 (2023). ADSGoogle Scholar
- Rhoné, B. et al. Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration. Nat. Commun.11, 5274 (2020). PubMedPubMed CentralADSGoogle Scholar
- Weider, L. J., Jeyasingh, P. D. & Frisch, D. Evolutionary aspects of resurrection ecology: progress, scope, and applications — an overview. Evol. Appl.11, 3–10 (2017). PubMedPubMed CentralGoogle Scholar
- Kawecki, T. J. et al. Experimental evolution. Trends Ecol. Evol.27, 547–560 (2012). Excellent review paper on main strengths and weaknesses of experimental evolution.PubMedGoogle Scholar
- Kofler, R. & Schlötterer, C. A guide for the design of evolve and resequencing studies. Mol. Biol. Evol.31, 474–483 (2014). A paper that used simulations to propose guidelines for optimizing design of E&R studies.CASPubMedGoogle Scholar
- Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat.138, 1315–1341 (1991). Google Scholar
- Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet.4, 457–469 (2003). A landmark review paper establishing E&R experiments as a new field of research developed around the idea of using microorganisms to investigate the dynamics of evolutionary adaptation.CASPubMedGoogle Scholar
- Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature461, 1243–1247 (2009). CASPubMedADSGoogle Scholar
- Tenaillon, O. et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature536, 165–170 (2016). CASPubMedPubMed CentralADSGoogle Scholar
- Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature551, 45–50 (2017). PubMedPubMed CentralADSGoogle Scholar
- Lenski, R. E. Revisiting the design of the long-term evolution experiment with Escherichia coli. J. Mol. Evol.91, 241–253 (2023). CASPubMedADSGoogle Scholar
- Barghi, N. et al. Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS Biol.17, e3000128 (2019). CASPubMedPubMed CentralGoogle Scholar
- Long, A., Liti, G., Luptak, A. & Tenaillon, O. Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat. Rev. Genet.16, 567–582 (2015). A comprehensive paper that reviews the field of E&R experiments across diverse systems, ranging from simple non-living RNA to bacteria, yeast andDrosophilasp.CASPubMedPubMed CentralGoogle Scholar
- Schlötterer, C., Kofler, R., Versace, E., Tobler, R. & Franssen, S. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity114, 431–440 (2015). PubMedGoogle Scholar
- Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat. Rev. Genet.15, 749–763 (2014). PubMedGoogle Scholar
- Huang, C.-J., Lu, M.-Y., Chang, Y.-W. & Li, W.-H. Experimental evolution of yeast for high-temperature tolerance. Mol. Biol. Evol.35, 1823–1839 (2018). CASPubMedGoogle Scholar
- Otte, K. A., Nolte, V., Mallard, F. & Schlötterer, C. The genetic architecture of temperature adaptation is shaped by population ancestry and not by selection regime. Genome Biol.22, 211 (2021). PubMedPubMed CentralGoogle Scholar
- Burny, C., Nolte, V., Dolezal, M. & Schlötterer, C. Genome-wide selection signatures reveal widespread synergistic effects of two different stressors in Drosophila melanogaster. Proc. Biol. Sci.289, 20221857 (2022). CASPubMedPubMed CentralGoogle Scholar
- Orozco‐Terwengel, P. et al. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Mol. Ecol.21, 4931–4941 (2012). PubMedPubMed CentralGoogle Scholar
- Tobler, R. et al. Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments. Mol. Biol. Evol.31, 364–375 (2014). CASPubMedGoogle Scholar
- Brennan, R. S., Garrett, A. D., Huber, K. E., Hargarten, H. & Pespeni, M. H. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc. R. Soc. B.286, 20190943 (2019). CASPubMedPubMed CentralGoogle Scholar
- Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA110, 6937–6942 (2013). CASPubMedPubMed CentralADSGoogle Scholar
- Waldvogel, A. M. et al. The genomic footprint of climate adaptation in Chironomus riparius. Mol. Ecol.27, 1439–1456 (2018). PubMedGoogle Scholar
- Mérot, C., Llaurens, V., Normandeau, E., Bernatchez, L. & Wellenreuther, M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat. Commun.11, 670 (2020). PubMedPubMed CentralADSGoogle Scholar
- Hsu, S. K., Belmouaden, C., Nolte, V. & Schlötterer, C. Parallel gene expression evolution in natural and laboratory evolved populations. Mol. Ecol.30, 884–894 (2021). CASPubMedGoogle Scholar
- Pfenninger, M. & Foucault, Q. Genomic processes underlying rapid adaptation of a natural Chironomus riparius population to unintendedly applied experimental selection pressures. Mol. Ecol.29, 536–548 (2020). CASPubMedGoogle Scholar
- Orsini, L. et al. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol. Evol.28, 274–282 (2013). An excellent, early review on how combining resurrection ecology and genomics can enhance capacity to forecast how populations can adapt to changing environments.PubMedPubMed CentralGoogle Scholar
- Kerfoot, W. C., Robbins, J. A. & Weider, L. J. A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnol. Oceanogr.44, 1232–1247 (1999). ADSGoogle Scholar
- Kerfoot, W. C. & Weider, L. J. Experimental paleoecology (resurrection ecology): chasing Van Valen’s Red Queen hypothesis. Limnol. Oceanogr.49, 1300–1316 (2004). ADSGoogle Scholar
- Franks, S. J. et al. The resurrection initiative: storing ancestral genotypes to capture evolution in action. Bioscience58, 870–873 (2008). Google Scholar
- Franks, S. J., Kane, N. C., O’Hara, N. B., Tittes, S. & Rest, J. S. Rapid genome‐wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools. Mol. Ecol.25, 3622–3631 (2016). CASPubMedPubMed CentralGoogle Scholar
- Franks, S. J. & Hoffmann, A. A. Genetics of climate change adaptation. Annu. Rev. Genet.46, 185–208 (2012). This early, comprehensive review paper covers in detail integrative approaches towards elucidating the genetic basis of adaptation.CASPubMedGoogle Scholar
- Orsini, L., Spanier, K. I. & De Meester, L. Genomic signature of natural and anthropogenic stress in wild populations of the waterflea Daphnia magna: validation in space, time and experimental evolution. Mol. Ecol.21, 2160–2175 (2012). PubMedGoogle Scholar
- Orsini, L. et al. Temporal genetic stability in natural populations of the waterflea Daphnia magna in response to strong selection pressure. Mol. Ecol.25, 6024–6038 (2016). PubMedGoogle Scholar
- Franks, S. J., Hamann, E. & Weis, A. E. Using the resurrection approach to understand contemporary evolution in changing environments. Evol. Appl.11, 17–28 (2018). PubMedGoogle Scholar
- Chaturvedi, A. et al. Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nat. Commun.12, 4306 (2021). CASPubMedPubMed CentralADSGoogle Scholar
- Wersebe, M. J. & Weider, L. J. Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species. Proc. Natl Acad. Sci. USA120, e2217276120 (2023). CASPubMedPubMed CentralGoogle Scholar
- Cuenca Cambronero, M., Zeis, B. & Orsini, L. Haemoglobin‐mediated response to hyper‐thermal stress in the keystone species Daphnia magna. Evol. Appl.11, 112–120 (2018). CASPubMedGoogle Scholar
- Exposito-Alonso, M. et al. The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genet.14, e1007155 (2018). PubMedPubMed CentralGoogle Scholar
- Hamann, E. et al. Plant eco-evolutionary responses to climate change: emerging directions. Plant Sci.304, 110737 (2021). CASPubMedGoogle Scholar
- Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol. Lett.17, 360–368 (2014). PubMedGoogle Scholar
- Hamann, E. et al. Rapid evolutionary changes in gene expression in response to climate fluctuations. Mol. Ecol.30, 193–206 (2021). PubMedGoogle Scholar
- Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature525, 372–375 (2015). CASPubMedADSGoogle Scholar
- Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science357, 495–498 (2017). CASPubMedADSGoogle Scholar
- Jensen, E. L. & Leigh, D. M. Using temporal genomics to understand contemporary climate change responses in wildlife. Ecol. Evol.12, e9340 (2022). PubMedPubMed CentralGoogle Scholar
- Clark, R. D. et al. The practice and promise of temporal genomics for measuring evolutionary responses to global change. Mol. Ecol. Resour.https://doi.org/10.1111/1755-0998.13789 (2023). ArticlePubMedGoogle Scholar
- Elleouet, J. S. & Aitken, S. N. The interplay between demography and neutral evolution at the expansion front of a widespread conifer, Picea sitchensis. Preprint at bioRxivhttps://doi.org/10.1101/327742 (2018).
- Lang, P. L. M., Willems, F. M., Scheepens, J. F., Burbano, H. A. & Bossdorf, O. Using herbaria to study global environmental change. Nat. Phytol.221, 110–122 (2019). Google Scholar
- Czorlich, Y., Aykanat, T., Erkinaro, J., Orell, P. & Primmer, C. R. Rapid evolution in salmon life history induced by direct and indirect effects of fishing. Science376, 420–423 (2022). CASPubMedADSGoogle Scholar
- Buffalo, V. & Coop, G. The linked selection signature of rapid adaptation in temporal genomic data. Genetics213, 1007–1045 (2019). PubMedPubMed CentralGoogle Scholar
- Foll, M., Shim, H. & Jensen, J. D. WFABC: a Wright–Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data. Mol. Ecol. Resour.15, 87–98 (2015). PubMedGoogle Scholar
- Therkildsen, N. O. et al. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua. Evol. Appl.6, 690–705 (2013). PubMedPubMed CentralGoogle Scholar
- Anderson, J. T., Panetta, A. M. & Mitchell-Olds, T. Evolutionary and ecological responses to anthropogenic climate change: update on anthropogenic climate change. Plant Physiol.160, 1728–1740 (2012). CASPubMedPubMed CentralGoogle Scholar
- DeBiasse, M. B. & Kelly, M. W. Plastic and evolved responses to global change: what can we learn from comparative transcriptomics? J. Hered.107, 71–81 (2016). PubMedGoogle Scholar
- Oomen, R. A. & Hutchings, J. A. Transcriptomic responses to environmental change in fishes: insights from RNA sequencing. Facets2, 610–641 (2017). Google Scholar
- Hu, J. & Barrett, R. Epigenetics in natural animal populations. J. Evol. Biol.30, 1612–1632 (2017). CASPubMedGoogle Scholar
- McCaw, B. A., Stevenson, T. J. & Lancaster, L. T. Epigenetic responses to temperature and climate. Integr. Comp. Biol.60, 1469–1480 (2020). CASPubMedGoogle Scholar
- Abdelnour, S. A. et al. Stress biomarkers and proteomics alteration to thermal stress in ruminants: a review. J. Therm. Biol.79, 120–134 (2019). CASPubMedGoogle Scholar
- Anastasiadi, D., Venney, C. J., Bernatchez, L. & Wellenreuther, M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol. Evol.36, 1124–1140 (2021). PubMedGoogle Scholar
- Ecker, S., Pancaldi, V., Valencia, A., Beck, S. & Paul, D. S. Epigenetic and transcriptional variability shape phenotypic plasticity. BioEssays40, 1700148 (2018). Google Scholar
- O’Dea, R. E., Noble, D. W., Johnson, S. L., Hesselson, D. & Nakagawa, S. The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. Environ. Epigenet.2, dvv014 (2016). PubMedPubMed CentralGoogle Scholar
- Pottier, P. et al. Developmental plasticity in thermal tolerance: ontogenetic variation, persistence, and future directions. Ecol. Lett.25, 2245–2268 (2022). PubMedPubMed CentralGoogle Scholar
- Gianella, M., Bradford, K. J. & Guzzon, F. Ecological, (epi) genetic and physiological aspects of bet-hedging in angiosperms. Plant Reprod.34, 21–36 (2021). PubMedPubMed CentralGoogle Scholar
- Donelan, S. C. et al. Transgenerational plasticity in human-altered environments. Trends Ecol. Evol.35, 115–124 (2020). PubMedGoogle Scholar
- Morris, M. R. & Rogers, S. M. Overcoming maladaptive plasticity through plastic compensation. Curr. Zool.59, 526–536 (2013). Google Scholar
- Hu, J. & Barrett, R. D. The role of plastic and evolved DNA methylation in parallel adaptation of threespine stickleback (Gasterosteus aculeatus). Mol. Ecol.32, 1581–1591 (2022). PubMedGoogle Scholar
- Morris, M. R. et al. Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol. Ecol.23, 3226–3240 (2014). PubMedGoogle Scholar
- Usui, T. et al. The evolution of plasticity at geographic range edges. Trends Ecol. Evol.38, 831–842 (2023). PubMedGoogle Scholar
- Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol.7, 1602–1612 (2015). CASPubMedPubMed CentralGoogle Scholar
- Healy, T. M. & Schulte, P. M. Patterns of alternative splicing in response to cold acclimation in fish. J. Exp. Biol.222, jeb.193516 (2019). Google Scholar
- Pajoro, A., Severing, E., Angenent, G. & Immink, R. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol.18, 102 (2017). CASPubMedPubMed CentralGoogle Scholar
- Seo, P. J., Park, M.-J. & Park, C.-M. Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. Planta237, 1415–1424 (2013). CASPubMedPubMed CentralGoogle Scholar
- Thorstensen, M. J., Turko, A. J., Heath, D. D., Jeffries, K. M. & Pitcher, T. E. Acute thermal stress elicits interactions between gene expression and alternative splicing in a fish of conservation concern. J. Exp. Biol.225, jeb244162 (2022). Differential gene expression and alternative splicing are assessed owing to handling and thermal stress in the imperiled redside dace (Clinostomus elongatus), with important implications for conservation and reintroductions during GCC.PubMedGoogle Scholar
- Strader, M., Wong, J., Kozal, L., Leach, T. & Hofmann, G. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J. Exp. Mar. Biol. Ecol.517, 54–64 (2019). A controlled epigenetic inheritance experiment showing that parental exposure to oceanic upwelling, a result of GCC, led to altered offspring DNA methylation associated with body size regardless of offspring environment.Google Scholar
- Venney, C. J. et al. Thermal regime during parental sexual maturation, but not during offspring rearing, modulates DNA methylation in brook charr (Salvelinus fontinalis). Proc. Biol. Sci.289, 20220670 (2022). CASPubMedPubMed CentralGoogle Scholar
- Gugger, P. F., Fitz‐Gibbon, S., PellEgrini, M. & Sork, V. L. Species‐wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol. Ecol.25, 1665–1680 (2016). CASPubMedGoogle Scholar
- Ishihara, A., Sapon, M. A. & Yamauchi, K. Seasonal acclimatization and thermal acclimation induce global histone epigenetic changes in liver of bullfrog (Lithobates catesbeianus) tadpole. Comp. Biochem. Physiol. A230, 39–48 (2019). CASGoogle Scholar
- Hajyzadeh, M., Turktas, M., Khawar, K. M. & Unver, T. miR408 overexpression causes increased drought tolerance in chickpea. Gene555, 186–193 (2015). CASPubMedGoogle Scholar
- Liu, Q. et al. Integrating small RNA sequencing with QTL mapping for identification of miRNAs and their target genes associated with heat tolerance at the flowering stage in rice. Front. Plant Sci.8, 43 (2017). PubMedPubMed CentralADSGoogle Scholar
- Weizman, E. & Levy, O. The role of chromatin dynamics under global warming response in the symbiotic coral model Aiptasia. Commun. Biol.2, 282 (2019). Correlations between RNA expression and promoter chromatin accessibility were found in symbiotic sea anemones exposed to thermal stress in genomic regions associated with oxidative stress and immune response.PubMedPubMed CentralGoogle Scholar
- Machado, H. E. et al. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. eLife10, e67577 (2021). CASPubMedPubMed CentralGoogle Scholar
- Liu, Y. et al. Methylation-eQTL analysis in cancer research. Bioinformatics37, 4014–4022 (2021). CASPubMedPubMed CentralGoogle Scholar
- Yang, I. V. et al. Relationship of DNA methylation and gene expression in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.190, 1263–1272 (2014). PubMedPubMed CentralGoogle Scholar
- Dunning, L. T., Dennis, A. B., Sinclair, B. J., Newcomb, R. D. & Buckley, T. R. Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus). Mol. Ecol.23, 2712–2726 (2014). CASPubMedGoogle Scholar
- Parkinson, J. E. et al. Extensive transcriptional variation poses a challenge to thermal stress biomarker development for endangered corals. Mol. Ecol.27, 1103–1119 (2018). CASPubMedGoogle Scholar
- Christensen, K. A. et al. Assessing the effects of genotype-by-environment interaction on epigenetic, transcriptomic, and phenotypic response in a Pacific salmon. G311, jkab021 (2021). CASPubMedPubMed CentralGoogle Scholar
- Van Der Graaf, A. et al. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc. Natl Acad. Sci. USA112, 6676–6681 (2015). PubMedPubMed CentralADSGoogle Scholar
- Dixon, G., Liao, Y., Bay, L. K. & Matz, M. V. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc. Natl Acad. Sci. USA115, 13342–13346 (2018). CASPubMedPubMed CentralADSGoogle Scholar
- Wu, Y. et al. Epigenome-wide association study of short-term temperature fluctuations based on within-sibship analyses in Australian females. Environ. Int.171, 107655 (2023). CASPubMedGoogle Scholar
- Oomen, R. A. & Hutchings, J. A. Genomic reaction norms inform predictions of plastic and adaptive responses to climate change. J. Anim. Ecol.91, 1073–1087 (2022). PubMedPubMed CentralGoogle Scholar
- Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett.4, 423–425 (2008). PubMedPubMed CentralGoogle Scholar
- Lacoursière-Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour.16, 1401–1414 (2016). PubMedGoogle Scholar
- Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv.17, e00547 (2019). Google Scholar
- Clare, E. L. et al. eDNAir: proof of concept that animal DNA can be collected from air sampling. PeerJ9, e11030 (2021). PubMedPubMed CentralGoogle Scholar
- Roger, F. et al. Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—a proof of concept from the field. Environ. DNA4, 790–807 (2022). CASGoogle Scholar
- Johnson, M. D., Fokar, M., Cox, R. D. & Barnes, M. A. Airborne environmental DNA metabarcoding detects more diversity, with less sampling effort, than a traditional plant community survey. BMC Ecol. Evol.21, 218 (2021). CASPubMedPubMed CentralGoogle Scholar
- Machado, K. B. et al. DNA metabarcoding reveals the responses of prokaryotes and eukaryotes microbiota to warming: are the patterns similar between taxonomic and trophic groups? Ecol. Indic.115, 106452 (2020). An experimental approach based on eDNA metabarcoding to evaluate the short-term effect of warming predicted by different future scenarios in the composition of the aquatic microbiota.Google Scholar
- Ferguson, R. M. et al. The ecological impacts of multiple environmental stressors on coastal biofilm bacteria. Glob. Change Biol.27, 3166–3178 (2021). CASGoogle Scholar
- Moinet, G. Y. et al. Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Glob. Change Biol.27, 6217–6231 (2021). A natural long-term warming experiment based on eDNA metabarcoding to study switch in microbial community compositions depending on soil temperature.Google Scholar
- Gallego, R., Jacobs-Palmer, E., Cribari, K. & Kelly, R. P. Environmental DNA metabarcoding reveals winners and losers of global change in coastal waters. Proc. Biol. Sci.287, 20202424 (2020). CASPubMedPubMed CentralGoogle Scholar
- Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun.11, 254 (2020). CASPubMedPubMed CentralADSGoogle Scholar
- Abirami, B., Radhakrishnan, M., Kumaran, S. & Wilson, A. Impacts of global warming on marine microbial communities. Sci. Total Environ.791, 147905 (2021). CASPubMedADSGoogle Scholar
- Thurber, R. V. et al. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol.11, 2148–2163 (2009). CASGoogle Scholar
- Busseni, G. et al. Large scale patterns of marine diatom richness: drivers and trends in a changing ocean. Glob. Ecol. Biogeogr.29, 1915–1928 (2020). Google Scholar
- Diner, R. E. et al. Pathogenic Vibrio species are associated with distinct environmental niches and planktonic taxa in Southern California (USA) aquatic microbiomes. mSystems6, e0057121 (2021). PubMedGoogle Scholar
- Wilcox, T. M. et al. Fine‐scale environmental DNA sampling reveals climate‐mediated interactions between native and invasive trout species. Ecosphere9, e02500 (2018). Google Scholar
- Isaak, D. J. et al. Do metapopulations and management matter for relict headwater bull trout populations in a warming climate? Ecol. Appl.32, e2594 (2022). PubMedGoogle Scholar
- Balint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol.33, 945–957 (2018). PubMedGoogle Scholar
- Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol.26, 5872–5895 (2017). PubMedGoogle Scholar
- Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science317, 111–114 (2007). CASPubMedPubMed CentralADSGoogle Scholar
- Wang, Y. et al. Late quaternary dynamics of arctic biota from ancient environmental genomics. Nature600, 86–92 (2021). A demonstration of the use of aDNA metagenomics to study how past climatic changes affected plant and animal communities.CASPubMedPubMed CentralADSGoogle Scholar
- Kjær, K. H. et al. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature612, 283–291 (2022). PubMedPubMed CentralADSGoogle Scholar
- Zhang, H., Huo, S., Yeager, K. M. & Wu, F. Sedimentary DNA record of eukaryotic algal and cyanobacterial communities in a shallow Lake driven by human activities and climate change. Sci. Total Environ.753, 141985 (2021). CASPubMedADSGoogle Scholar
- Alsos, I. G. et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene26, 627–642 (2016). ADSGoogle Scholar
- Díaz, F. P. et al. Multiscale climate change impacts on plant diversity in the Atacama Desert. Glob. Change Biol.25, 1733–1745 (2019). ADSGoogle Scholar
- Palkopoulou, E. et al. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. Biol. Sci.280, 20131910 (2013). PubMedPubMed CentralGoogle Scholar
- Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA106, 22352–22357 (2009). CASPubMedPubMed CentralADSGoogle Scholar
- Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature506, 47–51 (2014). CASPubMedADSGoogle Scholar
- Thomsen, P. F. & Willerslev, E. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv.183, 4–18 (2015). Google Scholar
- Hechler, R. M., Yates, M. C., Chain, F. J. & Cristescu, M. E. Environmental transcriptomics under heat stress: can environmental RNA reveal changes in gene expression of aquatic organisms? Preprint at bioRxivhttps://doi.org/10.1101/2022.10.06.510878 (2022).
- Whitmore, L. et al. Inadvertent human genomic bycatch and intentional capture raise beneficial applications and ethical concerns with environmental DNA. Nat. Ecol. Evol.7, 873–888 (2023). PubMedPubMed CentralGoogle Scholar
- Ficetola, G. F. & Taberlet, P. Towards exhaustive community ecology via DNA metabarcoding. Mol. Ecol.https://doi.org/10.1111/mec.16881 (2023).
- Chen, Y. et al. The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability. Nat. Commun.13, 4821 (2022). CASPubMedPubMed CentralADSGoogle Scholar
- Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA116, 10418–10423 (2019). CASPubMedPubMed CentralADSGoogle Scholar
- Tournebize, R. et al. Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (Coffea canephora). Glob. Change Biol.28, 4124–4142 (2022). CASGoogle Scholar
- Sherpa, S. et al. Genomic shifts, phenotypic clines, and fitness costs associated with cold tolerance in the Asian tiger mosquito. Mol. Biol. Evol.39, 5 (2022). Google Scholar
- Forester, B. R., Beever, E. A., Darst, C., Szymanski, J. & Funk, W. C. Linking evolutionary potential to extinction risk: applications and future directions. Front. Ecol. Environ.20, 507–515 (2022). Google Scholar
- Pan, H., Holbrook, J. D., Karnani, N. & Kwoh, C. K. Gene, environment and methylation (GEM): a tool suite to efficiently navigate large scale epigenome wide association studies and integrate genotype and interaction between genotype and environment. BMC Bioinformatics17, 299 (2016). PubMedPubMed CentralGoogle Scholar
- Guo, X. et al. Linking genotype to phenotype in multi-omics data of small sample. BMC Genomics22, 537 (2021). CASPubMedPubMed CentralGoogle Scholar
- Shi, W. J. et al. Unsupervised discovery of phenotype-specific multi-omics networks. Bioinformatics35, 4336–4343 (2019). PubMedPubMed CentralGoogle Scholar
- Hanson, C., Cairns, J., Wang, L. & Sinha, S. Principled multi-omic analysis reveals gene regulatory mechanisms of phenotype variation. Genome Res.28, 1207–1216 (2018). CASPubMedPubMed CentralGoogle Scholar
- Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol.33, 427–440 (2018). PubMedGoogle Scholar
- Layton, K. K. S. & Bradbury, I. R. Harnessing the power of multi-omics data for predicting climate change response. J. Anim. Ecol.91, 1064–1072 (2022). PubMedGoogle Scholar
- Euclide, P. et al. Is structural variation necessary to create islands of divergence in moderate gene flow species? A case study in sockeye salmon. Preprint at Authoreahttps://doi.org/10.22541/au.168371520.09492745/v1 (2023).
- Wellenreuther, M., Mérot, C., Berdan, E. & Bernatchez, L. Going beyond SNPs: the role of structural genomic variants in adaptive evolution and species diversification. Mol. Ecol.28, 1203–1209 (2019). PubMedGoogle Scholar
- Hamann, E. et al. Review: plant eco-evolutionary responses to climate change: emerging directions. Plant Sci.304, 110737 (2021). CASPubMedGoogle Scholar
- Ferchiou, S., Caza, F., de Boissel, P. G. J., Villemur, R. & St-Pierre, Y. Applying the concept of liquid biopsy to monitor the microbial biodiversity of marine coastal ecosystems. ISME Commun.2, 61 (2022). PubMedPubMed CentralGoogle Scholar
- Valdivieso, A., Anastasiadi, D., Ribas, L. & Piferrer, F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol. Ecol. Resour.23, 453–470 (2023). CASPubMedGoogle Scholar
- Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet.19, 371–384 (2018). CASPubMedGoogle Scholar
- Tumajer, J. et al. Forward modeling reveals multidecadal trends in cambial kinetics and phenology at treeline. Front. Plant Sci.12, 613643 (2021). PubMedPubMed CentralGoogle Scholar
- Xuereb, A., Rougemont, Q., Tiffin, P., Xue, H. & Phifer-Rixey, M. Individual-based eco-evolutionary models for understanding adaptation in changing seas. Proc. Biol. Sci.288, 20212006 (2021). PubMedPubMed CentralGoogle Scholar
- Carley, L. N., Morris, W. F., Walsh, R., Riebe, D. & Mitchell‐Olds, T. Are genetic variation and demographic performance linked? Evol. Appl.15, 1888–1906 (2022). PubMedPubMed CentralGoogle Scholar
- Mathon, L. et al. The distribution of coastal fish eDNA sequences in the Anthropocene. Glob. Ecol. Biogeogr.32, 1336–1352 (2023). Google Scholar
- Lewin, H. A. et al. The earth BioGenome project 2020: starting the clock. Proc. Natl Acad. Sci. USA119, e2115635118 (2022). CASPubMedPubMed CentralGoogle Scholar
- Jenkins, G. B. et al. Reproducibility in ecology and evolution: minimum standards for data and code. Ecol. Evol.13, e9961 (2023). PubMedPubMed CentralGoogle Scholar
- Dauphin, B. et al. Re-thinking the environment in landscape genomics. Trends Ecol. Evol.38, 261–274 (2023). CASPubMedGoogle Scholar
- Waldvogel, A.-M. & Pfenninger, M. Temperature dependence of spontaneous mutation rates. Genome Res.31, 1582–1589 (2021). PubMedPubMed CentralGoogle Scholar
- Leigh, D. M. et al. Opportunities and challenges of macrogenetic studies. Nat. Rev. Genet.22, 791–807 (2021). CASPubMedGoogle Scholar
- Schmidt, C., Hoban, S. & Jetz, W. Conservation macrogenetics: harnessing genetic data to meet conservation commitments. Trends Genet.https://doi.org/10.1016/j.tig.2023.08.002 (2023).
- Hoban, S. et al. Global genetic diversity status and trends: towards a suite of essential biodiversity variables (EBVs) for genetic composition. Biol. Rev.97, 1511–1538 (2022). PubMedGoogle Scholar
- Hoban, S. et al. Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. Conserv. Genet.24, 181–191 (2023). PubMedPubMed CentralGoogle Scholar
- Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell.190, 231–259 (2006). Google Scholar
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.25, 1965–1978 (2005). Google Scholar
- McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology89, 2712–2724 (2008). PubMedGoogle Scholar
- Excoffier, L. & Foll, M. Fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics27, 1332–1334 (2011). CASPubMedGoogle Scholar
- Deatherage, D. E., Kepner, J. L., Bennett, A. F., Lenski, R. E. & Barrick, J. E. Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures. Proc. Natl Acad. Sci. USA114, E1904–E1912 (2017). CASPubMedPubMed CentralADSGoogle Scholar
- Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol.151, 165–188 (2014). Google Scholar
- Lenski, R. E. Convergence and divergence in a long-term experiment with bacteria. Am. Nat.190, S57–S68 (2017). PubMedGoogle Scholar
- Jansen, M. et al. Thermal tolerance in the keystone species Daphnia magna — a candidate gene and an outlier analysis approach. Mol. Ecol.26, 2291–2305 (2017). CASPubMedGoogle Scholar
Acknowledgements
This work was supported by an NSERC Discovery grant to L.B. C.J.V. is supported by an NSERC postdoctoral fellowship.