Genomics for monitoring and understanding species responses to global climate change

All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species’ potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species’ evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

The importance of genomic variation for biodiversity, ecosystems and people

Article 16 October 2020

The evolutionary genomics of species’ responses to climate change

Article 09 August 2021

Opportunities and challenges of macrogenetic studies

Article 18 August 2021

References

  1. Smith, T. B. & Bernatchez, L. Evolutionary change in human-altered environments. Mol. Ecol.17, 1–8 (2008). PubMedGoogle Scholar
  2. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett.15, 365–377 (2012). PubMedPubMed CentralGoogle Scholar
  3. Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl.7, 1–14 (2014). PubMedPubMed CentralGoogle Scholar
  4. Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science354, aaf7671 (2016). PubMedGoogle Scholar
  5. Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett.4, 4–18 (2020). A road map of how science and society can work together to facilitate sampling, estimating of fitness parameters and genome sequencing for a broad range of species to implement mitigation measures to face GCC.PubMedPubMed CentralGoogle Scholar
  6. Lancaster, L. T. et al. Understanding climate change response in the age of genomics. J. Anim. Ecol.91, 1056–1063 (2022). Special issue highlighting how emerging genomic approaches are used to understand population responses to GCC across a diverse range of animal systems.PubMedGoogle Scholar
  7. Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. B367, 1665–1679 (2012). PubMedPubMed CentralGoogle Scholar
  8. Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol.28, 1753–1765 (2022). CASGoogle Scholar
  9. Sandoval-Castillo, J. et al. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proc. Natl Acad. Sci. USA117, 17112–17121 (2020). CASPubMedPubMed CentralADSGoogle Scholar
  10. Eisenhauer, N. et al. The dark side of animal phenology. Trends Ecol. Evol.33, 898–901 (2018). PubMedGoogle Scholar
  11. Miller-Rushing, A. J. & Primack, R. B. Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology89, 332–341 (2008). PubMedGoogle Scholar
  12. Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLOS Biol.5, e124 (2007). PubMedPubMed CentralGoogle Scholar
  13. Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol.25, 325–331 (2010). PubMedGoogle Scholar
  14. Parmesan, C. & Singer, M. C. Mosaics of climatic stress across species’ ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Phil. Trans. R. Soc. B377, 20210003 (2022). PubMedPubMed CentralGoogle Scholar
  15. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature470, 479–485 (2011). CASPubMedADSGoogle Scholar
  16. Carroll, S. P. et al. Applying evolutionary biology to address global challenges. Science346, 1245993 (2014). PubMedPubMed CentralGoogle Scholar
  17. Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Phil. Trans. R. Soc. B374, 20180186 (2019). PubMedPubMed CentralGoogle Scholar
  18. Hansen, M. M., Olivieri, I., Waller, D. M., Nielsen, E. E. & Group, T. G. W. Monitoring adaptive genetic responses to environmental change. Mol. Ecol.21, 1311–1329 (2012). PubMedGoogle Scholar
  19. Verhoeven, K. J. F., vonHoldt, B. M. & Sork, V. L. Epigenetics in ecology and evolution: what we know and what we need to know. Mol. Ecol.25, 1631–1638 (2016). PubMedGoogle Scholar
  20. Everett, L. J. et al. Gene expression networks in the Drosophila genetic reference panel. Genome Res.30, 485–496 (2020). CASPubMedPubMed CentralGoogle Scholar
  21. Yu, Y. & Bergland, A. O. Distinct signals of clinal and seasonal allele frequency change at eQTLs in Drosophila melanogaster. Evol76, 2758–2768 (2022). CASGoogle Scholar
  22. Stange, M., Barrett, R. D. H. & Hendry, A. P. The importance of genomic variation for biodiversity, ecosystems and people. Nat. Rev. Genet.22, 89–105 (2021). CASPubMedGoogle Scholar
  23. McGaughran, A., Laver, R. & Fraser, C. Evolutionary responses to warming. Trends Ecol. Evol.36, 591–600 (2021). PubMedGoogle Scholar
  24. Springer, N. M. & Schmitz, R. J. Exploiting induced and natural epigenetic variation for crop improvement. Nat. Rev. Genet.18, 563–575 (2017). CASPubMedGoogle Scholar
  25. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet.21, 597–614 (2020). CASPubMedPubMed CentralGoogle Scholar
  26. De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet.22, 572–587 (2021). PubMedPubMed CentralGoogle Scholar
  27. Thomas, L. et al. Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. Sci. Adv.8, eabl9185 (2022). CASPubMedPubMed CentralGoogle Scholar
  28. Hoban, S. et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am. Nat.188, 379–397 (2016). PubMedPubMed CentralGoogle Scholar
  29. Boulanger, E. et al. Climate differently influences the genomic patterns of two sympatric marine fish species. J. Anim. Ecol.91, 1180–1195 (2022). PubMedGoogle Scholar
  30. Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol.24, 4348–4370 (2015). PubMedGoogle Scholar
  31. Lasky, J. R., Josephs, E. B. & Morris, G. P. Genotype–environment associations to reveal the molecular basis of environmental adaptation. Plant Cell35, 125–138 (2023). PubMedGoogle Scholar
  32. Alvarado, A. H. et al. Genotype–environment associations across spatial scales reveal the importance of putative adaptive genetic variation in divergence. Evol. Appl.15, 1390–1407 (2022). CASPubMedPubMed CentralGoogle Scholar
  33. Nielsen, E. S., Henriques, R., Beger, M., Toonen, R. J. & Von der Heyden, S. Multi-model seascape genomics identifies distinct environmental drivers of selection among sympatric marine species. BMC Evol. Biol.20, 1–17 (2020). Google Scholar
  34. Brauer, C. J., Unmack, P. J., Smith, S., Bernatchez, L. & Beheregaray, L. B. On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Mol. Ecol.27, 3484–3497 (2018). CASPubMedGoogle Scholar
  35. Grummer, J. A. et al. Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol. Evol.34, 641–654 (2019). PubMedGoogle Scholar
  36. Lotterhos, K. E. & Whitlock, M. C. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol. Ecol.24, 1031–1046 (2015). PubMedGoogle Scholar
  37. Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol.27, 2215–2233 (2018). CASPubMedGoogle Scholar
  38. Capblancq, T., Luu, K., Blum, M. G. & Bazin, E. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol. Ecol. Resour.18, 1223–1233 (2018). CASPubMedGoogle Scholar
  39. Martínez-Berdeja, A. et al. Functional variants of DOG1 control seed chilling responses and variation in seasonal life-history strategies in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA117, 2526–2534 (2020). PubMedPubMed CentralADSGoogle Scholar
  40. Fournier‐Level, A. et al. Adaptive significance of flowering time variation across natural seasonal environments in Arabidopsis thaliana. N. Phytol.234, 719–734 (2022). Google Scholar
  41. Capblancq, T. & Forester, B. R. Redundancy analysis: a Swiss Army knife for landscape genomics. Methods Ecol. Evol.12, 2298–2309 (2021). A review of the application and challenges of RDA for understanding the relationship between genetic variation and the environment, with a case study and associated tutorial for users.Google Scholar
  42. Booker, T. R., Yeaman, S., Whiting, J. R. & Whitlock, M. C. The WZA: a window-based method for characterizing genotype-environment associations. Mol. Ecol. Resour.https://doi.org/10.1111/1755-0998.13768 (2023).
  43. Meek, M. H. et al. Understanding local adaptation to prepare populations for climate change. Bioscience73, 36–47 (2023). Google Scholar
  44. Beer, M. A., Kane, R. A., Micheletti, S. J., Kozakiewicz, C. P. & Storfer, A. Landscape genomics of the streamside salamander: implications for species management in the face of environmental change. Evol. Appl.15, 220–236 (2022). A demonstration of the use of GEAs to detect adaptive variation for understanding the potential for adaptation to environmental challenges across a heterogeneous landscape.PubMedPubMed CentralGoogle Scholar
  45. Aguirre‐Liguori, J. et al. Connecting genomic patterns of local adaptation and niche suitability in teosintes. Mol. Ecol.26, 4226–4240 (2017). PubMedGoogle Scholar
  46. Flanagan, S. P., Forester, B. R., Latch, E. K., Aitken, S. N. & Hoban, S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol. Appl.11, 1035–1052 (2018). PubMedGoogle Scholar
  47. Xuereb, A., d’Aloia, C. C., Andrello, M., Bernatchez, L. & Fortin, M. J. Incorporating putatively neutral and adaptive genomic data into marine conservation planning. Conserv. Biol.35, 909–920 (2020). PubMedGoogle Scholar
  48. Forester, B. R. et al. Genomics‐informed delineation of conservation units in a desert amphibian. Mol. Ecol.31, 5249–5269 (2022). PubMedPubMed CentralGoogle Scholar
  49. Mahony, C. R. et al. Evaluating genomic data for management of local adaptation in a changing climate: a lodgepole pine case study. Evol. Appl.13, 116–131 (2020). PubMedGoogle Scholar
  50. Chen, Z. et al. Applying genomics in assisted migration under climate change: framework, empirical applications, and case studies. Evol. Appl.15, 3–21 (2021). MathSciNetPubMedPubMed CentralGoogle Scholar
  51. Lotterhos, K. E. The paradox of adaptive trait clines with nonclinal patterns in the underlying genes. Proc. Natl Acad. Sci. USA120, e2220313120 (2023). CASPubMedPubMed CentralGoogle Scholar
  52. Rockman, M. V. THE QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution66, 1–17 (2012). PubMedGoogle Scholar
  53. Rougemont, Q. et al. Long-distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Mol. Ecol.32, 542–559 (2023). CASPubMedGoogle Scholar
  54. Rybnikov, S. R., Frenkel, Z., Hübner, S., Weissman, D. B. & Korol, A. B. Modeling the evolution of recombination plasticity: a prospective review. BioEssays45, e2200237 (2023). PubMedGoogle Scholar
  55. Schlötterer, C. How predictable is adaptation from standing genetic variation? Experimental evolution in Drosophila highlights the central role of redundancy and linkage disequilibrium. Phil. Trans. R. Soc. B378, 20220046 (2023). PubMedPubMed CentralGoogle Scholar
  56. Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R. & Weigel, D. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature573, 126–129 (2019). A large-scale common garden experiment showing differences in relative fitness under climate change associated with candidate genomic regions inArabidopsis thaliana.CASPubMedADSGoogle Scholar
  57. Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature441, 947–952 (2006). CASPubMedADSGoogle Scholar
  58. Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett.18, 1–16 (2015). Adapted the GF approach on SNP data set, originally developed to model spatial variation in community composition, to model turnover in allele frequency and called it ‘genetic offset’.PubMedGoogle Scholar
  59. Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science359, 83–86 (2018). Among the first studies to assess genomic offset on natural populations and link it with observed losses in fitness (population declines) in order to provide a rigorous validation of the predictions.CASPubMedADSGoogle Scholar
  60. Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst.51, 245–269 (2020). Review of the main steps and associated statistical methods in genomic prediction of maladaptation across current and future climatic landscapes.Google Scholar
  61. Rellstab, C., Dauphin, B. & Exposito-Alonso, M. Prospects and limitations of genomic offset in conservation management. Evol. Appl.14, 1202–1212 (2021). PubMedPubMed CentralGoogle Scholar
  62. Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: calculating importance gradients on physical predictors. Ecology93, 156–168 (2012). PubMedGoogle Scholar
  63. Ingvarsson, P. K. & Bernhardsson, C. Genome-wide signatures of environmental adaptation in European aspen (Populus tremula) under current and future climate conditions. Evol. Appl.13, 132–142 (2019). PubMedPubMed CentralGoogle Scholar
  64. Martins, K. et al. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evol. Appl.11, 1842–1858 (2018). CASPubMedPubMed CentralGoogle Scholar
  65. Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett.21, 1085–1096 (2018). PubMedGoogle Scholar
  66. Ferrier, S. & Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol.43, 393–404 (2006). Google Scholar
  67. Supple, M. A. et al. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change. eLife7, e31835 (2018). PubMedPubMed CentralGoogle Scholar
  68. Steane, D. A. et al. Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Mol. Ecol.23, 2500–2513 (2014). PubMedGoogle Scholar
  69. Carvalho, C. S. et al. Combining genotype, phenotype, and environmental data to delineate site-adjusted provenance strategies for ecological restoration. Mol. Ecol. Resour.21, 44–58 (2021). PubMedGoogle Scholar
  70. Rellstab, C. et al. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol.25, 5907–5924 (2016). PubMedGoogle Scholar
  71. Pina-Martins, F., Baptista, J., Pappas, G. Jr & Paulo, O. S. New insights into adaptation and population structure of cork oak using genotyping by sequencing. Glob. Change Biol.25, 337–350 (2019). ADSGoogle Scholar
  72. Rochat, E., Selmoni, O. & Joost, S. Spatial areas of genotype probability: predicting the spatial distribution of adaptive genetic variants under future climatic conditions. Divers. Distrib.27, 1076–1090 (2021). Google Scholar
  73. Gain, C. et al. A quantitative theory for genomic offset statistics. Mol. Biol. Evol.40, 6 (2023). Google Scholar
  74. Hoffmann, A. A., Weeks, A. R. & Sgrò, C. M. Opportunities and challenges in assessing climate change vulnerability through genomics. Cell184, 1420–1425 (2021). Describes the limitations and their respective solutions in genomic vulnerability assessments.CASPubMedGoogle Scholar
  75. Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol.5, 1350–1360 (2021). PubMedGoogle Scholar
  76. Aguirre‐Liguori, J. A. et al. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana). Mol. Ecol.28, 2814–2830 (2019). PubMedGoogle Scholar
  77. Brauer, C. J. et al. Natural hybridization reduces vulnerability to climate change. Nat. Clim. Change13, 282–289 (2023). ADSGoogle Scholar
  78. Rhoné, B. et al. Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration. Nat. Commun.11, 5274 (2020). PubMedPubMed CentralADSGoogle Scholar
  79. Weider, L. J., Jeyasingh, P. D. & Frisch, D. Evolutionary aspects of resurrection ecology: progress, scope, and applications — an overview. Evol. Appl.11, 3–10 (2017). PubMedPubMed CentralGoogle Scholar
  80. Kawecki, T. J. et al. Experimental evolution. Trends Ecol. Evol.27, 547–560 (2012). Excellent review paper on main strengths and weaknesses of experimental evolution.PubMedGoogle Scholar
  81. Kofler, R. & Schlötterer, C. A guide for the design of evolve and resequencing studies. Mol. Biol. Evol.31, 474–483 (2014). A paper that used simulations to propose guidelines for optimizing design of E&R studies.CASPubMedGoogle Scholar
  82. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat.138, 1315–1341 (1991). Google Scholar
  83. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet.4, 457–469 (2003). A landmark review paper establishing E&R experiments as a new field of research developed around the idea of using microorganisms to investigate the dynamics of evolutionary adaptation.CASPubMedGoogle Scholar
  84. Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature461, 1243–1247 (2009). CASPubMedADSGoogle Scholar
  85. Tenaillon, O. et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature536, 165–170 (2016). CASPubMedPubMed CentralADSGoogle Scholar
  86. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature551, 45–50 (2017). PubMedPubMed CentralADSGoogle Scholar
  87. Lenski, R. E. Revisiting the design of the long-term evolution experiment with Escherichia coli. J. Mol. Evol.91, 241–253 (2023). CASPubMedADSGoogle Scholar
  88. Barghi, N. et al. Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS Biol.17, e3000128 (2019). CASPubMedPubMed CentralGoogle Scholar
  89. Long, A., Liti, G., Luptak, A. & Tenaillon, O. Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat. Rev. Genet.16, 567–582 (2015). A comprehensive paper that reviews the field of E&R experiments across diverse systems, ranging from simple non-living RNA to bacteria, yeast andDrosophilasp.CASPubMedPubMed CentralGoogle Scholar
  90. Schlötterer, C., Kofler, R., Versace, E., Tobler, R. & Franssen, S. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity114, 431–440 (2015). PubMedGoogle Scholar
  91. Schlötterer, C., Tobler, R., Kofler, R. & Nolte, V. Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat. Rev. Genet.15, 749–763 (2014). PubMedGoogle Scholar
  92. Huang, C.-J., Lu, M.-Y., Chang, Y.-W. & Li, W.-H. Experimental evolution of yeast for high-temperature tolerance. Mol. Biol. Evol.35, 1823–1839 (2018). CASPubMedGoogle Scholar
  93. Otte, K. A., Nolte, V., Mallard, F. & Schlötterer, C. The genetic architecture of temperature adaptation is shaped by population ancestry and not by selection regime. Genome Biol.22, 211 (2021). PubMedPubMed CentralGoogle Scholar
  94. Burny, C., Nolte, V., Dolezal, M. & Schlötterer, C. Genome-wide selection signatures reveal widespread synergistic effects of two different stressors in Drosophila melanogaster. Proc. Biol. Sci.289, 20221857 (2022). CASPubMedPubMed CentralGoogle Scholar
  95. Orozco‐Terwengel, P. et al. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Mol. Ecol.21, 4931–4941 (2012). PubMedPubMed CentralGoogle Scholar
  96. Tobler, R. et al. Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments. Mol. Biol. Evol.31, 364–375 (2014). CASPubMedGoogle Scholar
  97. Brennan, R. S., Garrett, A. D., Huber, K. E., Hargarten, H. & Pespeni, M. H. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc. R. Soc. B.286, 20190943 (2019). CASPubMedPubMed CentralGoogle Scholar
  98. Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA110, 6937–6942 (2013). CASPubMedPubMed CentralADSGoogle Scholar
  99. Waldvogel, A. M. et al. The genomic footprint of climate adaptation in Chironomus riparius. Mol. Ecol.27, 1439–1456 (2018). PubMedGoogle Scholar
  100. Mérot, C., Llaurens, V., Normandeau, E., Bernatchez, L. & Wellenreuther, M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat. Commun.11, 670 (2020). PubMedPubMed CentralADSGoogle Scholar
  101. Hsu, S. K., Belmouaden, C., Nolte, V. & Schlötterer, C. Parallel gene expression evolution in natural and laboratory evolved populations. Mol. Ecol.30, 884–894 (2021). CASPubMedGoogle Scholar
  102. Pfenninger, M. & Foucault, Q. Genomic processes underlying rapid adaptation of a natural Chironomus riparius population to unintendedly applied experimental selection pressures. Mol. Ecol.29, 536–548 (2020). CASPubMedGoogle Scholar
  103. Orsini, L. et al. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol. Evol.28, 274–282 (2013). An excellent, early review on how combining resurrection ecology and genomics can enhance capacity to forecast how populations can adapt to changing environments.PubMedPubMed CentralGoogle Scholar
  104. Kerfoot, W. C., Robbins, J. A. & Weider, L. J. A new approach to historical reconstruction: combining descriptive and experimental paleolimnology. Limnol. Oceanogr.44, 1232–1247 (1999). ADSGoogle Scholar
  105. Kerfoot, W. C. & Weider, L. J. Experimental paleoecology (resurrection ecology): chasing Van Valen’s Red Queen hypothesis. Limnol. Oceanogr.49, 1300–1316 (2004). ADSGoogle Scholar
  106. Franks, S. J. et al. The resurrection initiative: storing ancestral genotypes to capture evolution in action. Bioscience58, 870–873 (2008). Google Scholar
  107. Franks, S. J., Kane, N. C., O’Hara, N. B., Tittes, S. & Rest, J. S. Rapid genome‐wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools. Mol. Ecol.25, 3622–3631 (2016). CASPubMedPubMed CentralGoogle Scholar
  108. Franks, S. J. & Hoffmann, A. A. Genetics of climate change adaptation. Annu. Rev. Genet.46, 185–208 (2012). This early, comprehensive review paper covers in detail integrative approaches towards elucidating the genetic basis of adaptation.CASPubMedGoogle Scholar
  109. Orsini, L., Spanier, K. I. & De Meester, L. Genomic signature of natural and anthropogenic stress in wild populations of the waterflea Daphnia magna: validation in space, time and experimental evolution. Mol. Ecol.21, 2160–2175 (2012). PubMedGoogle Scholar
  110. Orsini, L. et al. Temporal genetic stability in natural populations of the waterflea Daphnia magna in response to strong selection pressure. Mol. Ecol.25, 6024–6038 (2016). PubMedGoogle Scholar
  111. Franks, S. J., Hamann, E. & Weis, A. E. Using the resurrection approach to understand contemporary evolution in changing environments. Evol. Appl.11, 17–28 (2018). PubMedGoogle Scholar
  112. Chaturvedi, A. et al. Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nat. Commun.12, 4306 (2021). CASPubMedPubMed CentralADSGoogle Scholar
  113. Wersebe, M. J. & Weider, L. J. Resurrection genomics provides molecular and phenotypic evidence of rapid adaptation to salinization in a keystone aquatic species. Proc. Natl Acad. Sci. USA120, e2217276120 (2023). CASPubMedPubMed CentralGoogle Scholar
  114. Cuenca Cambronero, M., Zeis, B. & Orsini, L. Haemoglobin‐mediated response to hyper‐thermal stress in the keystone species Daphnia magna. Evol. Appl.11, 112–120 (2018). CASPubMedGoogle Scholar
  115. Exposito-Alonso, M. et al. The rate and potential relevance of new mutations in a colonizing plant lineage. PLoS Genet.14, e1007155 (2018). PubMedPubMed CentralGoogle Scholar
  116. Hamann, E. et al. Plant eco-evolutionary responses to climate change: emerging directions. Plant Sci.304, 110737 (2021). CASPubMedGoogle Scholar
  117. Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol. Lett.17, 360–368 (2014). PubMedGoogle Scholar
  118. Hamann, E. et al. Rapid evolutionary changes in gene expression in response to climate fluctuations. Mol. Ecol.30, 193–206 (2021). PubMedGoogle Scholar
  119. Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature525, 372–375 (2015). CASPubMedADSGoogle Scholar
  120. Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science357, 495–498 (2017). CASPubMedADSGoogle Scholar
  121. Jensen, E. L. & Leigh, D. M. Using temporal genomics to understand contemporary climate change responses in wildlife. Ecol. Evol.12, e9340 (2022). PubMedPubMed CentralGoogle Scholar
  122. Clark, R. D. et al. The practice and promise of temporal genomics for measuring evolutionary responses to global change. Mol. Ecol. Resour.https://doi.org/10.1111/1755-0998.13789 (2023). ArticlePubMedGoogle Scholar
  123. Elleouet, J. S. & Aitken, S. N. The interplay between demography and neutral evolution at the expansion front of a widespread conifer, Picea sitchensis. Preprint at bioRxivhttps://doi.org/10.1101/327742 (2018).
  124. Lang, P. L. M., Willems, F. M., Scheepens, J. F., Burbano, H. A. & Bossdorf, O. Using herbaria to study global environmental change. Nat. Phytol.221, 110–122 (2019). Google Scholar
  125. Czorlich, Y., Aykanat, T., Erkinaro, J., Orell, P. & Primmer, C. R. Rapid evolution in salmon life history induced by direct and indirect effects of fishing. Science376, 420–423 (2022). CASPubMedADSGoogle Scholar
  126. Buffalo, V. & Coop, G. The linked selection signature of rapid adaptation in temporal genomic data. Genetics213, 1007–1045 (2019). PubMedPubMed CentralGoogle Scholar
  127. Foll, M., Shim, H. & Jensen, J. D. WFABC: a Wright–Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data. Mol. Ecol. Resour.15, 87–98 (2015). PubMedGoogle Scholar
  128. Therkildsen, N. O. et al. Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of Atlantic cod Gadus morhua. Evol. Appl.6, 690–705 (2013). PubMedPubMed CentralGoogle Scholar
  129. Anderson, J. T., Panetta, A. M. & Mitchell-Olds, T. Evolutionary and ecological responses to anthropogenic climate change: update on anthropogenic climate change. Plant Physiol.160, 1728–1740 (2012). CASPubMedPubMed CentralGoogle Scholar
  130. DeBiasse, M. B. & Kelly, M. W. Plastic and evolved responses to global change: what can we learn from comparative transcriptomics? J. Hered.107, 71–81 (2016). PubMedGoogle Scholar
  131. Oomen, R. A. & Hutchings, J. A. Transcriptomic responses to environmental change in fishes: insights from RNA sequencing. Facets2, 610–641 (2017). Google Scholar
  132. Hu, J. & Barrett, R. Epigenetics in natural animal populations. J. Evol. Biol.30, 1612–1632 (2017). CASPubMedGoogle Scholar
  133. McCaw, B. A., Stevenson, T. J. & Lancaster, L. T. Epigenetic responses to temperature and climate. Integr. Comp. Biol.60, 1469–1480 (2020). CASPubMedGoogle Scholar
  134. Abdelnour, S. A. et al. Stress biomarkers and proteomics alteration to thermal stress in ruminants: a review. J. Therm. Biol.79, 120–134 (2019). CASPubMedGoogle Scholar
  135. Anastasiadi, D., Venney, C. J., Bernatchez, L. & Wellenreuther, M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol. Evol.36, 1124–1140 (2021). PubMedGoogle Scholar
  136. Ecker, S., Pancaldi, V., Valencia, A., Beck, S. & Paul, D. S. Epigenetic and transcriptional variability shape phenotypic plasticity. BioEssays40, 1700148 (2018). Google Scholar
  137. O’Dea, R. E., Noble, D. W., Johnson, S. L., Hesselson, D. & Nakagawa, S. The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. Environ. Epigenet.2, dvv014 (2016). PubMedPubMed CentralGoogle Scholar
  138. Pottier, P. et al. Developmental plasticity in thermal tolerance: ontogenetic variation, persistence, and future directions. Ecol. Lett.25, 2245–2268 (2022). PubMedPubMed CentralGoogle Scholar
  139. Gianella, M., Bradford, K. J. & Guzzon, F. Ecological, (epi) genetic and physiological aspects of bet-hedging in angiosperms. Plant Reprod.34, 21–36 (2021). PubMedPubMed CentralGoogle Scholar
  140. Donelan, S. C. et al. Transgenerational plasticity in human-altered environments. Trends Ecol. Evol.35, 115–124 (2020). PubMedGoogle Scholar
  141. Morris, M. R. & Rogers, S. M. Overcoming maladaptive plasticity through plastic compensation. Curr. Zool.59, 526–536 (2013). Google Scholar
  142. Hu, J. & Barrett, R. D. The role of plastic and evolved DNA methylation in parallel adaptation of threespine stickleback (Gasterosteus aculeatus). Mol. Ecol.32, 1581–1591 (2022). PubMedGoogle Scholar
  143. Morris, M. R. et al. Gene expression plasticity evolves in response to colonization of freshwater lakes in threespine stickleback. Mol. Ecol.23, 3226–3240 (2014). PubMedGoogle Scholar
  144. Usui, T. et al. The evolution of plasticity at geographic range edges. Trends Ecol. Evol.38, 831–842 (2023). PubMedGoogle Scholar
  145. Bay, R. A. & Palumbi, S. R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biol. Evol.7, 1602–1612 (2015). CASPubMedPubMed CentralGoogle Scholar
  146. Healy, T. M. & Schulte, P. M. Patterns of alternative splicing in response to cold acclimation in fish. J. Exp. Biol.222, jeb.193516 (2019). Google Scholar
  147. Pajoro, A., Severing, E., Angenent, G. & Immink, R. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol.18, 102 (2017). CASPubMedPubMed CentralGoogle Scholar
  148. Seo, P. J., Park, M.-J. & Park, C.-M. Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions. Planta237, 1415–1424 (2013). CASPubMedPubMed CentralGoogle Scholar
  149. Thorstensen, M. J., Turko, A. J., Heath, D. D., Jeffries, K. M. & Pitcher, T. E. Acute thermal stress elicits interactions between gene expression and alternative splicing in a fish of conservation concern. J. Exp. Biol.225, jeb244162 (2022). Differential gene expression and alternative splicing are assessed owing to handling and thermal stress in the imperiled redside dace (Clinostomus elongatus), with important implications for conservation and reintroductions during GCC.PubMedGoogle Scholar
  150. Strader, M., Wong, J., Kozal, L., Leach, T. & Hofmann, G. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J. Exp. Mar. Biol. Ecol.517, 54–64 (2019). A controlled epigenetic inheritance experiment showing that parental exposure to oceanic upwelling, a result of GCC, led to altered offspring DNA methylation associated with body size regardless of offspring environment.Google Scholar
  151. Venney, C. J. et al. Thermal regime during parental sexual maturation, but not during offspring rearing, modulates DNA methylation in brook charr (Salvelinus fontinalis). Proc. Biol. Sci.289, 20220670 (2022). CASPubMedPubMed CentralGoogle Scholar
  152. Gugger, P. F., Fitz‐Gibbon, S., PellEgrini, M. & Sork, V. L. Species‐wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol. Ecol.25, 1665–1680 (2016). CASPubMedGoogle Scholar
  153. Ishihara, A., Sapon, M. A. & Yamauchi, K. Seasonal acclimatization and thermal acclimation induce global histone epigenetic changes in liver of bullfrog (Lithobates catesbeianus) tadpole. Comp. Biochem. Physiol. A230, 39–48 (2019). CASGoogle Scholar
  154. Hajyzadeh, M., Turktas, M., Khawar, K. M. & Unver, T. miR408 overexpression causes increased drought tolerance in chickpea. Gene555, 186–193 (2015). CASPubMedGoogle Scholar
  155. Liu, Q. et al. Integrating small RNA sequencing with QTL mapping for identification of miRNAs and their target genes associated with heat tolerance at the flowering stage in rice. Front. Plant Sci.8, 43 (2017). PubMedPubMed CentralADSGoogle Scholar
  156. Weizman, E. & Levy, O. The role of chromatin dynamics under global warming response in the symbiotic coral model Aiptasia. Commun. Biol.2, 282 (2019). Correlations between RNA expression and promoter chromatin accessibility were found in symbiotic sea anemones exposed to thermal stress in genomic regions associated with oxidative stress and immune response.PubMedPubMed CentralGoogle Scholar
  157. Machado, H. E. et al. Broad geographic sampling reveals the shared basis and environmental correlates of seasonal adaptation in Drosophila. eLife10, e67577 (2021). CASPubMedPubMed CentralGoogle Scholar
  158. Liu, Y. et al. Methylation-eQTL analysis in cancer research. Bioinformatics37, 4014–4022 (2021). CASPubMedPubMed CentralGoogle Scholar
  159. Yang, I. V. et al. Relationship of DNA methylation and gene expression in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.190, 1263–1272 (2014). PubMedPubMed CentralGoogle Scholar
  160. Dunning, L. T., Dennis, A. B., Sinclair, B. J., Newcomb, R. D. & Buckley, T. R. Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus). Mol. Ecol.23, 2712–2726 (2014). CASPubMedGoogle Scholar
  161. Parkinson, J. E. et al. Extensive transcriptional variation poses a challenge to thermal stress biomarker development for endangered corals. Mol. Ecol.27, 1103–1119 (2018). CASPubMedGoogle Scholar
  162. Christensen, K. A. et al. Assessing the effects of genotype-by-environment interaction on epigenetic, transcriptomic, and phenotypic response in a Pacific salmon. G311, jkab021 (2021). CASPubMedPubMed CentralGoogle Scholar
  163. Van Der Graaf, A. et al. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc. Natl Acad. Sci. USA112, 6676–6681 (2015). PubMedPubMed CentralADSGoogle Scholar
  164. Dixon, G., Liao, Y., Bay, L. K. & Matz, M. V. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc. Natl Acad. Sci. USA115, 13342–13346 (2018). CASPubMedPubMed CentralADSGoogle Scholar
  165. Wu, Y. et al. Epigenome-wide association study of short-term temperature fluctuations based on within-sibship analyses in Australian females. Environ. Int.171, 107655 (2023). CASPubMedGoogle Scholar
  166. Oomen, R. A. & Hutchings, J. A. Genomic reaction norms inform predictions of plastic and adaptive responses to climate change. J. Anim. Ecol.91, 1073–1087 (2022). PubMedPubMed CentralGoogle Scholar
  167. Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett.4, 423–425 (2008). PubMedPubMed CentralGoogle Scholar
  168. Lacoursière-Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour.16, 1401–1414 (2016). PubMedGoogle Scholar
  169. Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv.17, e00547 (2019). Google Scholar
  170. Clare, E. L. et al. eDNAir: proof of concept that animal DNA can be collected from air sampling. PeerJ9, e11030 (2021). PubMedPubMed CentralGoogle Scholar
  171. Roger, F. et al. Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—a proof of concept from the field. Environ. DNA4, 790–807 (2022). CASGoogle Scholar
  172. Johnson, M. D., Fokar, M., Cox, R. D. & Barnes, M. A. Airborne environmental DNA metabarcoding detects more diversity, with less sampling effort, than a traditional plant community survey. BMC Ecol. Evol.21, 218 (2021). CASPubMedPubMed CentralGoogle Scholar
  173. Machado, K. B. et al. DNA metabarcoding reveals the responses of prokaryotes and eukaryotes microbiota to warming: are the patterns similar between taxonomic and trophic groups? Ecol. Indic.115, 106452 (2020). An experimental approach based on eDNA metabarcoding to evaluate the short-term effect of warming predicted by different future scenarios in the composition of the aquatic microbiota.Google Scholar
  174. Ferguson, R. M. et al. The ecological impacts of multiple environmental stressors on coastal biofilm bacteria. Glob. Change Biol.27, 3166–3178 (2021). CASGoogle Scholar
  175. Moinet, G. Y. et al. Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Glob. Change Biol.27, 6217–6231 (2021). A natural long-term warming experiment based on eDNA metabarcoding to study switch in microbial community compositions depending on soil temperature.Google Scholar
  176. Gallego, R., Jacobs-Palmer, E., Cribari, K. & Kelly, R. P. Environmental DNA metabarcoding reveals winners and losers of global change in coastal waters. Proc. Biol. Sci.287, 20202424 (2020). CASPubMedPubMed CentralGoogle Scholar
  177. Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun.11, 254 (2020). CASPubMedPubMed CentralADSGoogle Scholar
  178. Abirami, B., Radhakrishnan, M., Kumaran, S. & Wilson, A. Impacts of global warming on marine microbial communities. Sci. Total Environ.791, 147905 (2021). CASPubMedADSGoogle Scholar
  179. Thurber, R. V. et al. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol.11, 2148–2163 (2009). CASGoogle Scholar
  180. Busseni, G. et al. Large scale patterns of marine diatom richness: drivers and trends in a changing ocean. Glob. Ecol. Biogeogr.29, 1915–1928 (2020). Google Scholar
  181. Diner, R. E. et al. Pathogenic Vibrio species are associated with distinct environmental niches and planktonic taxa in Southern California (USA) aquatic microbiomes. mSystems6, e0057121 (2021). PubMedGoogle Scholar
  182. Wilcox, T. M. et al. Fine‐scale environmental DNA sampling reveals climate‐mediated interactions between native and invasive trout species. Ecosphere9, e02500 (2018). Google Scholar
  183. Isaak, D. J. et al. Do metapopulations and management matter for relict headwater bull trout populations in a warming climate? Ecol. Appl.32, e2594 (2022). PubMedGoogle Scholar
  184. Balint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol.33, 945–957 (2018). PubMedGoogle Scholar
  185. Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol.26, 5872–5895 (2017). PubMedGoogle Scholar
  186. Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science317, 111–114 (2007). CASPubMedPubMed CentralADSGoogle Scholar
  187. Wang, Y. et al. Late quaternary dynamics of arctic biota from ancient environmental genomics. Nature600, 86–92 (2021). A demonstration of the use of aDNA metagenomics to study how past climatic changes affected plant and animal communities.CASPubMedPubMed CentralADSGoogle Scholar
  188. Kjær, K. H. et al. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature612, 283–291 (2022). PubMedPubMed CentralADSGoogle Scholar
  189. Zhang, H., Huo, S., Yeager, K. M. & Wu, F. Sedimentary DNA record of eukaryotic algal and cyanobacterial communities in a shallow Lake driven by human activities and climate change. Sci. Total Environ.753, 141985 (2021). CASPubMedADSGoogle Scholar
  190. Alsos, I. G. et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene26, 627–642 (2016). ADSGoogle Scholar
  191. Díaz, F. P. et al. Multiscale climate change impacts on plant diversity in the Atacama Desert. Glob. Change Biol.25, 1733–1745 (2019). ADSGoogle Scholar
  192. Palkopoulou, E. et al. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. Biol. Sci.280, 20131910 (2013). PubMedPubMed CentralGoogle Scholar
  193. Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA106, 22352–22357 (2009). CASPubMedPubMed CentralADSGoogle Scholar
  194. Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature506, 47–51 (2014). CASPubMedADSGoogle Scholar
  195. Thomsen, P. F. & Willerslev, E. Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv.183, 4–18 (2015). Google Scholar
  196. Hechler, R. M., Yates, M. C., Chain, F. J. & Cristescu, M. E. Environmental transcriptomics under heat stress: can environmental RNA reveal changes in gene expression of aquatic organisms? Preprint at bioRxivhttps://doi.org/10.1101/2022.10.06.510878 (2022).
  197. Whitmore, L. et al. Inadvertent human genomic bycatch and intentional capture raise beneficial applications and ethical concerns with environmental DNA. Nat. Ecol. Evol.7, 873–888 (2023). PubMedPubMed CentralGoogle Scholar
  198. Ficetola, G. F. & Taberlet, P. Towards exhaustive community ecology via DNA metabarcoding. Mol. Ecol.https://doi.org/10.1111/mec.16881 (2023).
  199. Chen, Y. et al. The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability. Nat. Commun.13, 4821 (2022). CASPubMedPubMed CentralADSGoogle Scholar
  200. Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA116, 10418–10423 (2019). CASPubMedPubMed CentralADSGoogle Scholar
  201. Tournebize, R. et al. Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (Coffea canephora). Glob. Change Biol.28, 4124–4142 (2022). CASGoogle Scholar
  202. Sherpa, S. et al. Genomic shifts, phenotypic clines, and fitness costs associated with cold tolerance in the Asian tiger mosquito. Mol. Biol. Evol.39, 5 (2022). Google Scholar
  203. Forester, B. R., Beever, E. A., Darst, C., Szymanski, J. & Funk, W. C. Linking evolutionary potential to extinction risk: applications and future directions. Front. Ecol. Environ.20, 507–515 (2022). Google Scholar
  204. Pan, H., Holbrook, J. D., Karnani, N. & Kwoh, C. K. Gene, environment and methylation (GEM): a tool suite to efficiently navigate large scale epigenome wide association studies and integrate genotype and interaction between genotype and environment. BMC Bioinformatics17, 299 (2016). PubMedPubMed CentralGoogle Scholar
  205. Guo, X. et al. Linking genotype to phenotype in multi-omics data of small sample. BMC Genomics22, 537 (2021). CASPubMedPubMed CentralGoogle Scholar
  206. Shi, W. J. et al. Unsupervised discovery of phenotype-specific multi-omics networks. Bioinformatics35, 4336–4343 (2019). PubMedPubMed CentralGoogle Scholar
  207. Hanson, C., Cairns, J., Wang, L. & Sinha, S. Principled multi-omic analysis reveals gene regulatory mechanisms of phenotype variation. Genome Res.28, 1207–1216 (2018). CASPubMedPubMed CentralGoogle Scholar
  208. Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol.33, 427–440 (2018). PubMedGoogle Scholar
  209. Layton, K. K. S. & Bradbury, I. R. Harnessing the power of multi-omics data for predicting climate change response. J. Anim. Ecol.91, 1064–1072 (2022). PubMedGoogle Scholar
  210. Euclide, P. et al. Is structural variation necessary to create islands of divergence in moderate gene flow species? A case study in sockeye salmon. Preprint at Authoreahttps://doi.org/10.22541/au.168371520.09492745/v1 (2023).
  211. Wellenreuther, M., Mérot, C., Berdan, E. & Bernatchez, L. Going beyond SNPs: the role of structural genomic variants in adaptive evolution and species diversification. Mol. Ecol.28, 1203–1209 (2019). PubMedGoogle Scholar
  212. Hamann, E. et al. Review: plant eco-evolutionary responses to climate change: emerging directions. Plant Sci.304, 110737 (2021). CASPubMedGoogle Scholar
  213. Ferchiou, S., Caza, F., de Boissel, P. G. J., Villemur, R. & St-Pierre, Y. Applying the concept of liquid biopsy to monitor the microbial biodiversity of marine coastal ecosystems. ISME Commun.2, 61 (2022). PubMedPubMed CentralGoogle Scholar
  214. Valdivieso, A., Anastasiadi, D., Ribas, L. & Piferrer, F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol. Ecol. Resour.23, 453–470 (2023). CASPubMedGoogle Scholar
  215. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet.19, 371–384 (2018). CASPubMedGoogle Scholar
  216. Tumajer, J. et al. Forward modeling reveals multidecadal trends in cambial kinetics and phenology at treeline. Front. Plant Sci.12, 613643 (2021). PubMedPubMed CentralGoogle Scholar
  217. Xuereb, A., Rougemont, Q., Tiffin, P., Xue, H. & Phifer-Rixey, M. Individual-based eco-evolutionary models for understanding adaptation in changing seas. Proc. Biol. Sci.288, 20212006 (2021). PubMedPubMed CentralGoogle Scholar
  218. Carley, L. N., Morris, W. F., Walsh, R., Riebe, D. & Mitchell‐Olds, T. Are genetic variation and demographic performance linked? Evol. Appl.15, 1888–1906 (2022). PubMedPubMed CentralGoogle Scholar
  219. Mathon, L. et al. The distribution of coastal fish eDNA sequences in the Anthropocene. Glob. Ecol. Biogeogr.32, 1336–1352 (2023). Google Scholar
  220. Lewin, H. A. et al. The earth BioGenome project 2020: starting the clock. Proc. Natl Acad. Sci. USA119, e2115635118 (2022). CASPubMedPubMed CentralGoogle Scholar
  221. Jenkins, G. B. et al. Reproducibility in ecology and evolution: minimum standards for data and code. Ecol. Evol.13, e9961 (2023). PubMedPubMed CentralGoogle Scholar
  222. Dauphin, B. et al. Re-thinking the environment in landscape genomics. Trends Ecol. Evol.38, 261–274 (2023). CASPubMedGoogle Scholar
  223. Waldvogel, A.-M. & Pfenninger, M. Temperature dependence of spontaneous mutation rates. Genome Res.31, 1582–1589 (2021). PubMedPubMed CentralGoogle Scholar
  224. Leigh, D. M. et al. Opportunities and challenges of macrogenetic studies. Nat. Rev. Genet.22, 791–807 (2021). CASPubMedGoogle Scholar
  225. Schmidt, C., Hoban, S. & Jetz, W. Conservation macrogenetics: harnessing genetic data to meet conservation commitments. Trends Genet.https://doi.org/10.1016/j.tig.2023.08.002 (2023).
  226. Hoban, S. et al. Global genetic diversity status and trends: towards a suite of essential biodiversity variables (EBVs) for genetic composition. Biol. Rev.97, 1511–1538 (2022). PubMedGoogle Scholar
  227. Hoban, S. et al. Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework. Conserv. Genet.24, 181–191 (2023). PubMedPubMed CentralGoogle Scholar
  228. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell.190, 231–259 (2006). Google Scholar
  229. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.25, 1965–1978 (2005). Google Scholar
  230. McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology89, 2712–2724 (2008). PubMedGoogle Scholar
  231. Excoffier, L. & Foll, M. Fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics27, 1332–1334 (2011). CASPubMedGoogle Scholar
  232. Deatherage, D. E., Kepner, J. L., Bennett, A. F., Lenski, R. E. & Barrick, J. E. Specificity of genome evolution in experimental populations of Escherichia coli evolved at different temperatures. Proc. Natl Acad. Sci. USA114, E1904–E1912 (2017). CASPubMedPubMed CentralADSGoogle Scholar
  233. Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol.151, 165–188 (2014). Google Scholar
  234. Lenski, R. E. Convergence and divergence in a long-term experiment with bacteria. Am. Nat.190, S57–S68 (2017). PubMedGoogle Scholar
  235. Jansen, M. et al. Thermal tolerance in the keystone species Daphnia magna — a candidate gene and an outlier analysis approach. Mol. Ecol.26, 2291–2305 (2017). CASPubMedGoogle Scholar

Acknowledgements

This work was supported by an NSERC Discovery grant to L.B. C.J.V. is supported by an NSERC postdoctoral fellowship.